5. Vectors

c. Scalar Multiplication

2. Geometric Construction

How are the magnitude and direction of \(c\,\vec v\) related to those of \(\vec v\)? Knowing this will allow us to give a geometric description of scalar multiplication:

First the magnitude: \[\begin{aligned} |c\,\vec v| &=\sqrt{\left(c\,v_1\right)^2+\left(c\,v_2\right)^2} =\sqrt{c^2\left({v_1}^2+{v_2}^2\right)} \\ &=\sqrt{c^2}\sqrt{ {v_1}^2+{v_2}^2} =|c|\,|\vec v| \end{aligned}\] Notice that \(\sqrt{c^2}=|c|\) not \(c\), in case \(c\) is negative. Thus, the vector \(c\,\vec v\) is \(|c|\) times as long as \(\vec v\).

Next the direction. Recall that the direction is its unit vector. So let \(\vec w=c\,\vec v=\left\langle c\,v_1,c\,v_2\right\rangle\). Then \(|\vec w|=|c|\,|\vec v|\). So \[\begin{aligned} \hat w &=\dfrac{\vec w}{|\vec w|} =\left\langle\dfrac{c\,v_1}{|c|\,|\vec v|}, \dfrac{c\,v_2}{|c|\,|\vec v|}\right\rangle \\ &=\dfrac{c}{|c|} \left\langle\dfrac{v_1}{|\vec v|}, \dfrac{v_2}{|\vec v|}\right\rangle =\dfrac{c}{|c|}\hat v \end{aligned}\] Consequently:

We summarize:

Geometric Construction

Given a scalar (real number) \(c\) and a vector \(\vec v=\left\langle v_1,v_2\right\rangle\), then the scalar product \(c\,\vec v\) satisfies:
  If \(c \gt 0\), then \(|c\,\vec v|=c\,|\vec v|\) and \(c\,\vec v\) points in the same direction as \(\vec v\).
  If \(c < 0\), then \(|c\,\vec v|=-c\,|\vec v|\) and \(c\,\vec v\) points in the opposite direction to \(\vec v\).
  If \(c=0\), then \(c\,\vec v=\vec 0\).
Further, if \(|c| \gt 1\) then \(c\,\vec v\) stretches \(\vec v\) and if \(|c| \lt 1\) then \(c\,\vec v\) shrinks \(\vec v\). This is shown in the diagram for \(c=2,1,\dfrac{1}{2},0,-\dfrac{1}{2},-1,-2\).

prop_ScalMultGeom

If \(\vec a=\left\langle3,-2\right\rangle\), describe in words the vectors \(3\,\vec a=\left\langle9,-6\right\rangle\) and \(-\dfrac{1}{3}\,\vec a =\left\langle-1,\dfrac{2}{3}\right\rangle\).

\(3\,\vec a\) is the vector in the same direction as \(\vec a\) but \(3\) times as long.
\(-\dfrac{1}{3}\,\vec a\) is the vector in the opposite direction from \(\vec a\) but \(\dfrac{1}{3}\) as long.

Consider the vector \(\vec a\) shown at the right. Which of the following is \(-\,\dfrac{1}{3}\vec a\)?

ex_ScalMultGeom

       ex_ScalMultGeomD            ex_ScalMultGeomB

       ex_ScalMultGeomC ex_ScalMultGeomA

\(\dfrac{1}{3}\times\vec a=\) ex_ScalMultGeomB    \(-\,\dfrac{1}{3}\times\vec a=\) ex_ScalMultGeomD

This is bullet (A).

© MYMathApps

Supported in part by NSF Grant #1123255